• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Plastic Expert Group

Materials Testing & Plastic Consultants

  • HOME
  • ABOUT US
  • SERVICES
    • Overview
    • Plastic Failure
    • Pipe Failure Analysis
    • Injection Molding Defects
    • Materials Testing
    • CPVC Fire Sprinkler Piping
  • LEARN
  • CONTACT US

Are Polypropylene Mesh Implants Safe?

Categories

You are here: Home / Plastic Failure Analysis & Testing / Are Polypropylene Mesh Implants Safe?

January 3, 2019

Recent problems and failures with PP mesh implants have led to thousands of hernia and surgical mesh lawsuits

All products that contain hydrogen bonded to carbon are susceptible to oxidative degradation. For example, foods that we eat and medicines that we take contain hydrogen bonded to carbon. Therefore, foods and medicines are generally stabilized against oxidation by the addition of antioxidants and are labeled with expiration dates.

Many aren’t aware, however, that most plastic products also contain hydrogen bonded to carbon and therefore are also prone to oxidative degradation. As plastics degrade by oxidation, they become brittle and begin to disintegrate and fall apart.

One of the most unstable plastics is polypropylene (PP). Manufacturers of PP plastic resin add antioxidant stabilizers to their plastic before they ship the resin granules to plastic part fabricators. If the resin manufacturers don’t add antioxidant stabilizers to the resin, it would degrade during shipment and be unusable. Therefore, for PP plastic parts to have a reasonable service life, they must be stabilized against oxidation by the addition of antioxidant stabilizers.

Unfortunately, antioxidants are depleted from the surface of plastic parts during use. The mechanism of depletion may include migration from the surface into other material in contact with the part’s surface or chemical degradation of the antioxidant as it performs its antioxidant function.

Dr. Duane Priddy

“If the PP part is very thin, has a high surface area, and is exposed to a highly oxidizing environment, the surface layer of the PP part will rapidly begin to degrade and become brittle.”

Dr. Duane Priddy, Plastic Expert Group, Founder & CEO

Degradation of PP mesh implants

Despite knowing this background information about the propensity of PP to degrade and become brittle, several medical device manufacturers decided to manufacture mesh implants using PP. The mesh/fabric consists of fibers that are woven together. Mesh fibers have an exceptionally high surface area and are under high stress because they are implanted for the purpose of support.

When plastic is under stress, degradation processes are accelerated. Since PP is prone to oxidative degradation and embrittlement, exposure of the mesh to stress in the body causes the mesh to fail after only a few years in the body.

After being in the body for several years, body tissues grow through the pores in the mesh fabric. When the mesh fabric turns brittle and breaks into pieces, removal of the mesh becomes very difficult.

Surgical removal of disintegrated mesh generally leads to significant damage to surrounding tissue and post-surgical infection and pain.

These problems and failures have led to thousands of hernia and surgical mesh lawsuits.

Several PP manufacturers in the US have forbidden the use of their PP resins for the manufacturer of implants and will not sell their PP resin to medical device companies suspected of using their PP for that purpose.

One mesh manufacturer, in an effort to circumvent the PP sourcing problem, imported PP from China and repackaged the PP resin to cover up the fact that they changed their resin supply.

Consult polypropylene mesh implant experts

At Plastic Expert Group, our team of professionals have served, and continue to serve, as expert witnesses in ongoing lawsuits involving the failure of PP mesh implants. We have conducted accelerated laboratory testing on several different PP mesh products and have developed laboratory data that predict service lifetime. The data clearly predicts these products will not survive more than a few years, at best, in the body.

We also work with forensic pathologists to examine mesh samples removed from the body. Optical microscope, Transmission Electron Microscope, and Scanning Electron Microscope imaging of the fibers vividly reveals that the surface layer of the fibers has degraded, become brittle, and severely cracked.

If your company needs assistance in making reliable and safe medical devices, we can help advise you on the best material to use. Our team of expert plastics scientists and engineers has decades of experience.

We specialize in material selection and testing, plastic part design, service life prediction, forensic failure analysis, chemical resistance testing, due diligence studies on new plastic technologies, troubleshooting/problem-solving in plastic manufacturing, and consulting on new opportunities and uses for existing products.

Our lead expert in this matter, Dr. Duane Priddy, was even recently interviewed for an episode of CBS’ 60 Minutes discussing the problem of gynecological polypropylene vaginal mesh failure:

https://vimeo.com/269756593

Contact us for a free initial consultation to discuss your needs and to learn how we can help.

Footer

Plastic Molding Defects
Our plastic consultants can help you discover the best process to make your part or product. If you’ve already discovered a defect, we will root out the source of the problem and recommend the best countermeasures and solutions to remedy the issue.
Find out more
Plastic Pipe Failure Analysis
Plastic isn’t perfect. CPVC, PEX and PVC pipes and components fail from time to time. Our consultants investigate pipe failure including failure analysis in our state-of-the-art testing laboratory.
Find out more
Material Testing
If a single component made from defective material goes into production, the entire product may be compromised. Using cutting edge tools and analysis, our team of expert consultants can prevent product failure, and accurately predict component lifespan based on the proposed application.
Find out more

Plastic Expert Group & Failure Labs Copyright © 2023 Toll Free USA: (877) 668-4345   •   International: +1 (989) 281-4465

www.plasticpipefailure.com   •   www.plasticfailure.com

Plastic Failure Services:  Molding Defects   •   Pipe Failure Analysis   •   Materials Testing Consultants   •   Plastic Failure   •   PEX Failure   •   Polymer Consulting